Forum des Religions - Les Origines

La Tour de Babel :: l'origine de l'empire mondial des religions

    Fibonacci Sequence in Music - original theory

    Arlitto
    Arlitto
    Admin
    Admin


    Sexe : Masculin Messages : 11539
    Date d'inscription : 03/10/2020

    Fibonacci Sequence in Music - original theory Empty Fibonacci Sequence in Music - original theory

    Message  Arlitto Sam 14 Nov 2020 - 5:40

    Fibonacci Sequence in Music - original theory 



    This is the Fibonacci Sequence in Music Harmony, original theory by Sylvain Lalonde in 2006.

    Comprehend in 3 minutes the clear relationship of music harmony with the Fibonacci Sequence. Understand the way music harmony works and extend your knowledge. This explanation was put online a couple of years ago but only in french, this is the english version. 

    Thank you very much and feel free to ask questions or interact. I would love to get support and feedback on this!

    Keep on learning

    .
    Arlitto
    Arlitto
    Admin
    Admin


    Sexe : Masculin Messages : 11539
    Date d'inscription : 03/10/2020

    Fibonacci Sequence in Music - original theory Empty Re: Fibonacci Sequence in Music - original theory

    Message  Arlitto Sam 14 Nov 2020 - 5:40

    Fibonacci sequence in music



    Hello, everyone.
    First, thank you all for watching this video. Seems I have been touching a matter of importance to you, regarding the 100.000 plus hits.
    There has been a lot of debate here wether the Fibonacci sequence can or can not be applied to music.
    It can. Since the thirteenth i.e. eight note HAS to be included. It is very typical for the Western, so called scientific mind, not to be able to look at one thing as the completion of one cycle AND the beginning of a new cycle.
    I'm sorry guys, but that's just what music is. Be as so called "scientific" as you can, as long as Bach's music touches you, you'll find yourselves on my side...
    Any musician would agree with me...

    .
    Arlitto
    Arlitto
    Admin
    Admin


    Sexe : Masculin Messages : 11539
    Date d'inscription : 03/10/2020

    Fibonacci Sequence in Music - original theory Empty Re: Fibonacci Sequence in Music - original theory

    Message  Arlitto Sam 14 Nov 2020 - 5:41

    Fibonacci dans l'harmonie - La musique décodée



    Nouvelle perception axée sur les 12 sons chromatiques qui donne une vue d'ensemble à l'érudit et facilite la compréhension des notions musicales. This new perception centered on the 12 chromatic sounds gives an overall picture to the scholar and facilitates the comprehension of the musical concepts. Read it for free in english at http://www.harmoniedesspheres.com

    .
    Arlitto
    Arlitto
    Admin
    Admin


    Sexe : Masculin Messages : 11539
    Date d'inscription : 03/10/2020

    Fibonacci Sequence in Music - original theory Empty Re: Fibonacci Sequence in Music - original theory

    Message  Arlitto Sam 14 Nov 2020 - 5:41

    Le nombre d'or dans la musique
     
              Les mathématiques ont été beaucoup utilisés dans la musique,  de manière très diversifiée, car ils peuvent jouer des rôle multiples. Plus précisément, nous avons recherché de quel façon le nombre d'or a été utilisé dans l'histoire musical, et nous avons conclu que Bela Bartok était l'un des compositeur l'ayant le plus introduit dans ses oeuvres. Nous nous somme donc intéressé à ses oeuvres de plus prés, afin de voir de quel façon il a mêlé la "divine proportion" et la musique. C'est ce que nous allons analyser ici.
     
     
    -Un art qui allie beauté et équilibre-
      
    L’étude qui suit se propose de donner quelques principes importants, nécessaires à la compréhension des œuvres de Bartok.  
    Béla Bartok (1881-1945) :
     
    Fibonacci Sequence in Music - original theory 6lh4
     
          Né en 1881, après des études de piano et d'harmonie à Bratislava puis à Budapest. Béla Bartók s’impose de nos jours comme l’un des    compositeurs les plus importants du vingtième siècle.   Il s’est d’abord fait connaître comme pianiste et ethnomusicologue. Avec son collègue et ami, Zoltan Kodály, il a parcouru les campagnes reculées d’Europe de l’Est, de 1907 à 1918, pour recueillir des milliers de chants folkloriques, un travail qui allait influencer de façon décisive son inspiration de compositeur. En particulier, Bartók a su intégrer dans ses propres œuvres les inflexions modales et les irrégularités métriques qui caractérisaient un grand nombre des chants traditionnels qu’il avait répertoriés au cours de ses voyages.
       
    La section d’or :
     
    Un élément capital dans la musique de Bartok est la section d’or.
    « La musique est un exercice d’arithmétique secrète, et celui qui s’y livre ignore qu’il manie des nombres ». Cette remarque fut citée par Leibnitz, mais il est très probable que Bartok ne l’aurait pas refutée. En effet, très épris de mathématiques,le compositeur était fasciné par les structures régulières qu’on peut trouver dans la nature, comme les formations en spirale des coquilles d’escargot ou l’ordre parfait des rangées d’un cône de pin. Ces deux exemples d’architecture naturelle illustrent l’une des plus anciennes règles numériques qu’il a été convenu d’appeler la règle d’or. Stipulée en termes géométriques, la règle prescrit qu’une unité soit divisible en deux parties de telle sorte que le rapport de la plus grande partie à l’unité soit le même que le rapport de la petite partie à la plus grande. Les anciens considérés qu’une forme, pour être « belle » devait pouvoir être calculée selon le rapport défini par la section d’or.
    Bartok l’a souvent utilisé pour la construction formelle de ses œuvres.

    Fibonacci Sequence in Music - original theory Smo3
     
    En termes numériques, on obtient un nombre irrationnel de l’ordre de 0, 618… pour la grande section et de 0, 382… pour la petite. Il est frappant de constater que ces proportions sont exactement celles qu’on observe entre les cercles concentriques de la coquille d’escargot et entre les rangées du cône de pin. Bartók a utilisé à outrance ces proportions pour déterminer les durées relatives des différentes sections de ses œuvres.
    L’usage d’un nombre irrationnel posant certaines difficultés, une série arithmétique simple permet de contourner le problème et de s’approcher de la règle d’or avec une faible marge d’erreur : les nombres de Fibonacci. On obtient ceux-ci en additionnant à un nombre son prédécesseur immédiat dans la série : 0 + 1 = 1, 1 + 1 = 2, 2 + 1 = 3, 3 + 2 = 5, etc., ce qui donne 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 et ainsi de suite. Plus on avance dans la série, plus on s’approche de la règle d’or en divisant n’importe quel nombre par son successeur.
     
    Musique pour cordes, percussions et célesta  1936


    Fibonacci Sequence in Music - original theory G68p Le premier mouvement de la Musique pour cordes, percussions et célesta est un des plus beaux exemples de construction formelle suivant ce procédé. Si l’on considère à nouveau les premières mesures du mouvement, on remarque que les entrées de la fugue correspondent aux numéros de mesure suivants:
     
    Altos 1, 2 : mesure 1                
    Violons 3, 4 : mesure 5
    Violoncelles 1, 2 : mesure         
    Violons 2 : mesure 13
    Contrebasses : mesure 18
    Violons 1 : mesure 27

     
     
    Les quatre premières entrées correspondent aux nombres de Fibonacci. Il manque les nombres 2, 3 et 21. Aux mesures 2 et 3, les altos énoncent les deuxième et troisième phrases du thème, bien délimitées par un demi-soupir. La mesure 21 marque la fin de l’énonciation du thème aux contrebasses et entame un court épisode avant l’entrée des premiers violons à la mesure 27. On se rappellera qu’à cet endroit commence une transition qui mène à l’entrée de la timbale à la mesure 34, un autre nombre de Fibonacci…
    Comment alors expliquer les entrées aux mesures 18 et 27 ? Il faut ici considérer des raisons d’ordre purement pratique. Il va de soi que plus on avance dans la série de Fibonacci, plus il faudra laisser du temps à la musique avant d’atteindre le nombre de mesure désiré pour pouvoir enfin y établir un moment formel important. Bartók se devait donc de trouver un moyen d’insérer ses moments musicaux d’importance secondaire entre les grandes frontières formelles. Il a donc décidé de faire des subdivisions à l’intérieur des grandes sections délimitées par les nombres de Fibonacci. Ainsi, de la mesure 13 (entrées des seconds violons) à la mesure 21 (début de l’épisode), on compte huit mesures. Si l’on divise ce groupe de huit mesures en deux sous-groupes de cinq et trois mesures (rapport de Fibonacci de 5 : 3), on obtient l’entrée des contrebasses à la mesure 18. De même, si l’on considère le passage de la mesure 13 à la mesure 34, on compte vingt et une mesures, qui, une fois subdivisées à leur tour en deux autres sous-groupes de quatorze et sept mesures (rapport de Fibonacci de 2 : 1) nous donnent l’entrée des premiers violons à la mesure 27.
     
    Conclusion :
    La musique de Béla Bartok est un art qui allie beauté et équilibre. En plus de cette étude sur les entrés des différents instruments, il faut savoir que les structures de sons, par exemple, répondent elles aussi aux préoccupations du compositeur vis-à-vis de la nature. En ce sens, les intervalles mélodiques et harmoniques de la Musique pour cordes, percussion et célesta sont eux-mêmes choisis à partir des nombres de Fibonacci. Ces quelques exemples démontre le souci du compositeur pour concevoir chaque œuvre comme un ensemble harmonieux qui soit régi par une seule loi universelle. Ce souci d’équilibre en fait un compositeur bien de son temps, à une époque où la science cherchait désespérément à expliquer l’univers en un principe « unique, simple et beau », pour citer Einstein. Les scientifiques n’y sont pas encore parvenus, mais Bartók, par sa musique, a pu au moins nous en donner une illustration saisissante.

    .
    Arlitto
    Arlitto
    Admin
    Admin


    Sexe : Masculin Messages : 11539
    Date d'inscription : 03/10/2020

    Fibonacci Sequence in Music - original theory Empty Re: Fibonacci Sequence in Music - original theory

    Message  Arlitto Sam 14 Nov 2020 - 5:42

    Construction et Perception de la musique

    I. Construction de la Musique
    Le lien entre la musique et les mathématiques a fasciné des érudits durant des siècles . Pythagore découvrait il y a plus de 2000 ans que les intervalles musicaux plaisant pouvaient être mis en relation avec des fractions simples. Depuis, de nombreuses façons de construire la musique à partir des mathématiques ont été abordées.
    Nous donnons dans cette première partie quelques notions de base de la musique indispensable à la bonne compréhension du  travail suivant.
     
    A. Les fondamentaux de la musique
     
    Le solfège correspond aux fondamentaux de la musique, c'est-à-dire à l’étude des bases de la théorie musicale et de sa notation.

    a - Les notes :

    7 notes constituent la musique : do-ré-mi-fa-sol-la-si-do qui est la notation syllabique  (C-D-E-F-G-A-B en notation alphabétique employée dans les pays de langue allemande et anglaise) : ces notes représentent  des durées et des hauteurs de son.
    Chaque note va de la plus grave à la plus aigüe.

    Fibonacci Sequence in Music - original theory Lgy3



        Note                       

       ronde                         

               blanche                 

           noire                         

      croche                        

    double croche

    Schéma

    Fibonacci Sequence in Music - original theory Yong

    Fibonacci Sequence in Music - original theory Kwao

    Fibonacci Sequence in Music - original theory 2oku

    Fibonacci Sequence in Music - original theory 1iz4

    Fibonacci Sequence in Music - original theory Fwy2

    Temps

     4 temps

     2 temps

     1 temps

     moitié d'un temps 

     la moitié de la moitié d'un temps
    (quart de temps)

    Equivalence

    2 blanches

    2 noires

    2 croches

     2 doubles croches

     2 triple croches
     
    b -La portée :
     
    Les notes se placent sur une portée :
    Fibonacci Sequence in Music - original theory Sfos
     
                             Fibonacci Sequence in Music - original theory Atz2
      Voici un système de portée :
    Fibonacci Sequence in Music - original theory J357


    c- Les clés
     
    Les clés se placent au commencement de la portée. Elles servent à fixer le nom des notes et à indiquer en même temps la place que celles-ci occupent dans l’échelle musicale. Il y a 3 figures de clé :
     
    la clé de sol, la clé de fa et la clé d’ut :
     Fibonacci Sequence in Music - original theory 0447
     

    d - Les altérations :
     
    L’altération est un signe qui modifie la hauteur de son de la note à laquelle elle est affectée.

    3 types d’altérations :
      
    - le dièse qui éléve le son d’un demi ton
    - le bémol qui abaisse le son d'un demi-ton
    - le bécarre qui annule l’effet de toutes les altérations

    Nous verrons ce qu’est un ton et un demi-ton par la suite.
    Fibonacci Sequence in Music - original theory Gdhw                     

    e -La mesure :
    La mesure est la division en parties égales d’un morceau de musique.
    Une mesure se subdivise généralement en deux, trois ou quatre parties, qu’on nomme temps .
    Il y a donc :
    - La mesure à 2 temps
    - La mesure à 3 temps
    - La mesure à 4 temps
    Lorsque les temps d’une mesure sont divisibles par deux, on les nomme temps binaires et ils constituent une mesure simple.
    Lorsque les temps d’une mesure sont divisibles par trois, on les nomme temps ternaires et ils constituent une mesure composée.
    Il y a donc deux espèces de mesures :
    La mesure simple dont les temps sont binaires et la mesure composée dont les temps sont tenaires.


    f -Chiffrage des mesures:
     
    Les différents types de mesures sont indiqués par les 2 chiffres placés après la clé et les altérations au début d'un morceau.

    Exemples :                                             
    Fibonacci Sequence in Music - original theory Ffkx

    Le chiffre du haut (numérateur) indique la durée de la mesure en nombre de valeurs.
    Le chiffre du bas (dénominateur) indique la valeur de référence.

    La ronde est représentée par le chiffre 1

    La blanche est représentée par le chiffre 2

    La noire est représentée par le chiffre 4

    La croche est représentée par le chiffre 8

    La double croche est représentée par le chiffre 16 (rare)

    La triple croche est représentée par le chiffre 32 (rare)
     
    La quadruple croche est représentée par le chiffre 64 (rare)

    Le chiffre du bas sera donc  toujours : 1, 2, 4, 8, 16, 32 ou 64 et jamais un autre.
     
    Pour le premier exemple  :  le chiffrage de la mesure "à deux-quatre"
                                                       




    C - Fibonacci/Nombre d'or
     

    a- Suite de Fibonacci
     
    A l’exception des deux premiers, chaque terme de la suite est égal à la somme des deux termes qui le précédent.

    Ex : 1, 1 , 2, 3, 5, 8, 13, 21, 34 etc. …
    En effet, soit F les termes de cette suite également appelé les nombres de Fibonacci : Fn=Fn-1 +Fn-2
    Le rapport de deux nombres consécutifs de la suite est alternativement supérieur et inférieur au nombre d’or qui est la solution positive de l'équation de la suite de Fibonacci  : Fibonacci Sequence in Music - original theory Spnm, le discrimant est égal a 5, il y a alors 2 solutions et la solution positive est le nombre Fibonacci Sequence in Music - original theory 05mk


    Reprenons l’exemple précédent :
    …. 8, 13, 21, 34…
    13/8=1,625>1 ,61803398 ; 21/13=1,61538<1,61803398 ; 34/21=1,61904>1,61803398 …
    On en déduit que plus l’écart s’amenuise, plus le rapport des deux nombres successifs(le plus grand /le plus petit) tend vers la valeur du nombre d’or.

    b - Application musicale à la suite de Fibonacci :
    Fibonacci Sequence in Music - original theory 5kxb

    1-Ceci est un extrait d’un prélude de Bach provenant du clavier bien tempéré.
    On remarque que le motif rythmique utilisé est tout à fait original. Les huit double croches s'organisent en 2+3+3, ou 5+3 si l'on veut. 2, 3, 5: les premiers termes de la série de Fibonacci.
    De plus,ce prélude comporte 34 mesures (si l'on exclut la mesure finale qui comporte uniquement l'accord d'ut majeur). Or si la basse descend constamment jusqu'à la mesure 21 (fa, IVe degré) avant de remonter vers une pédale de sol (Ve degré) qui amène la conclusion. 34=21+13, 13 et 21 étant les 7ème et 8ème termes de la suite de Fibonacci.

    2-Le morceau de musique de Tool intitulé Lateralus reprend en quelque sorte la suite de Fibonacci : les syllabes des paroles de la chanson correspondent aux premiers termes ascendants et descendants de la suite de Fibonacci.

    (1) Black,
    (1) then,(2) white are,
    (3) all I see,
    (5) in my infancy,
    (8) red and yellow then came to be,
    (5) reaching out to me,
    (3) lets me see.(2) There is,
    (1) so,
    (1) much,
    (2) more and
    (3) beckons me,
    (5) to look through to these,
    (8) infinite possibilities.(13) As below so above and beyond I imagine,
    (8) drawn outside the lines of reason.
    (5) Push the envelope.
    (3) Watch it bend.
     
    De plus, le chanteur commence à chanter à 1:37 minutes ce qui correspond approximativement à 1,618 qui n’est autre que le nombre d’or.

    3- Méthode de construction du morceau de musique présenté à l'oral

    Nous avons associé à chaque terme de la suite une note. Mais les termes de la suite deviennent rapidement très élevés par rapport aux nombre de notes disponibles que nous pouvons jouer avec nos instruments. C’est pour cela que nous utiliserons des modulos, soit modulo 7 si nous utilisons la gamme classique : Do, Ré, Mi, Fa, Sol, La, Si, Do ou modulo 12 si nous utilisons la gamme diatonique, c'est à dire comportant des dièses et bémols créant ainsi une gamme de 12 notes.


    La suite : http://tpe-musique.e-monsite.com/pages/construction-de-la-musique.html

    .

      La date/heure actuelle est Jeu 21 Nov 2024 - 11:20